Looking through drumlins: testing the application of ground-penetrating radar
نویسندگان
چکیده
Ground-penetrating radar (GPR) is becoming a commonly applied technique in geomorphology. However, its use in the study of subglacial bedforms has yet to be fully explored and exploited. This paper presents the results of a GPR feasibility study conducted on a drumlinized terrain in Cumbria, UK, where five drumlins were investigated using multiple radar antenna frequencies. The site was selected for the presence of nearby bedrock outcrops, suggesting a shallow drumlinized diamict–bedrock contact and a permeable lithology. Despite the clayey sediment and unfavourable weather conditions, a considerable penetration depth of �12m was achieved when using a 50MHz antenna, with a separation of 1m, trace spacing of 1m and 128-fold vertical stack. Results indicate that the drumlinized diamict is in direct erosional contact with the bedrock. While the internal drumlin geometry is generally chaotic on the stoss side, evidence of layering dipping downflow at an angle greater than the drumlin surface profile was found on the lee side. The inter-drumlin areas comprise �4m of infill sediment that masks part of the original drumlin profile. Overall, this study indicates that GPR can be deployed successfully in the study of glacial bedform sedimentary
منابع مشابه
Evaluation and Improvement of Spectral Features for the Detection of Buried Explosive Hazards Using Forward-Looking Ground-Penetrating Radar
We provide an evaluation of spectral features extracted from the signal return of a forward-looking ground penetrating radar to improve the detection performance of buried explosive hazards. The evaluations are performed on data collected at two different lanes at a government test site. The performance of the one-dimensional (1D), two-dimensional (2D) and multiple (ML) spectral features will b...
متن کاملAn overview of ground-penetrating radar signal processing techniques for road inspections
Ground-penetrating radar (GPR) was firstly used in traffic infrastructure surveys during the first half of the Seventies for testing in tunnel applications. From that time onwards, such non-destructive testing (NDT) technique has found exactly in the field of road engineering one of the application areas of major interest for its capability in performing accurate continuous profiles of pavement...
متن کاملLocally-Adaptive Detection Algorithm for Forward-Looking Ground- Penetrating Radar
This paper proposes an effective anomaly detection algorithm for a forward-looking ground-penetrating radar (FLGPR). One challenge for threat detection using FLGPR is its high dynamic range in response to different kinds of targets and clutter objects. The application of a fixed threshold for detection often yields a large number of false alarms. We propose a locally-adaptive detection method t...
متن کاملProgress in the Research of Ground Bounce Removal for Landmine Detection with Ground Penetrating Radar
Downward looking ground penetrating radar (GPR) has been considered a viable technology for landmine detection. For such a GPR with the antennas positioned very close to the ground surface, the reflections from the ground surface, i.e., the ground bounce, are very strong and can completely dominate the weak returns from shallowly buried plastic mines. Hence, one of the key challenges of using G...
متن کاملAdvanced Inversion Techniques for Ground Penetrating Radar
Ground Penetrating Radar (GPR) systems are nowadays standard inspection tools in several application areas, such as subsurface prospecting, civil engineering and cultural heritage monitoring. Usually, the raw output of GPR is provided as a B-scan, which has to be further processed in order to extract the needed information about the inspected scene. In this framework, inverse-scattering-based a...
متن کامل